Single transverse spin asymmetry (SSA) of W/Z bosons

Zhong-Bo Kang lowa State University

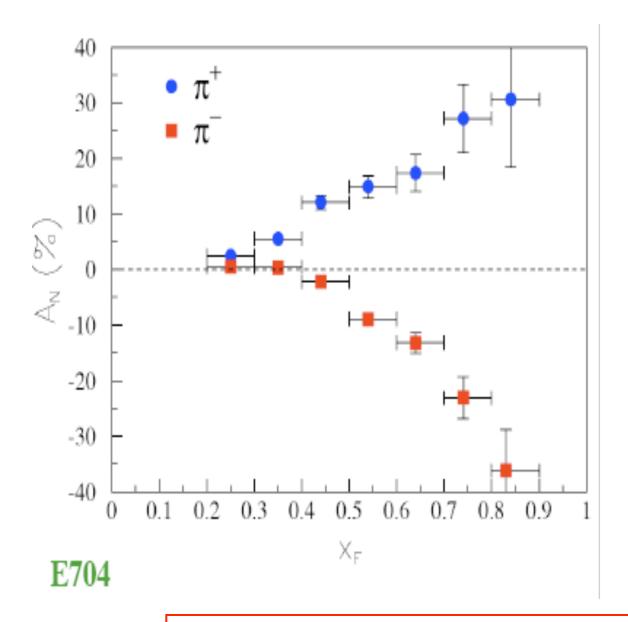
Berkeley Summer Program on Nuclear Spin Physics Berkeley, CA, June 11, 2009

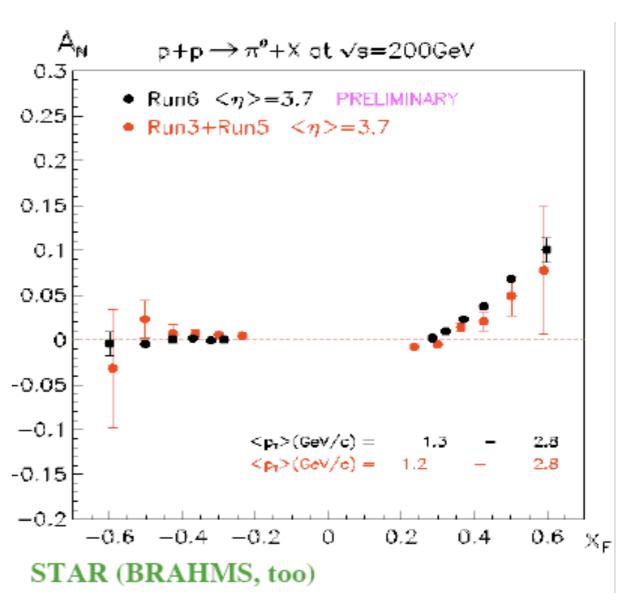
based on work with J. W. Qiu

Experiment: Single Spin Asymmetries

Fermilab E704, STAR, PHENIX, BRAHMS, COMPASS, HERMES, JLAB:

$$p^{\uparrow}p
ightarrow \pi X$$

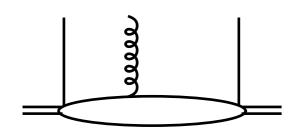




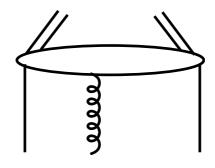
SSAs are observed in various experiments at different √s

Two mechanisms to generate SSA in QCD

- SSA is related to parton's transverse motion
- Collinear factorization approach:
 - Twist-3 three-parton correlation functions: Qiu-Sterman matrix element, ...
 - Twist-3 three-parton fragmentation functions:



Efremov-Teryaev 82, 84, Qiu-Sterman 91, 98, ...



Koike, 02, Zhou, Yuan, 09

- TMD approach: Transverse Momentum Dependent distributions probe the parton's intrinsic transverse momentum
 - Sivers function: in Parton Distribution Function (PDF)
 Sivers 90
 - Collins function: in Fragmentation Function (FF)
 Collins 93

Relation between twist-3 and TMD approaches

- They apply in different kinematic domain:
 - TMD approach: need TMD factorization, applies for the process with two observed momentum scales: DY at small q_T

 $Q_1\gg Q_2$ $\begin{cases} Q_1 & \text{necessary for pQCD factorization to have a chance} \\ Q_2 & \text{sensitive to parton's transverse momentum} \end{cases}$

- Collinear factorization approach: more relevant for single scale hard process: inclusive pion production at pp collision
- They generate same results in the overlap region when they both apply:
 - Twist-3 three-parton correlation in distribution

 Ji, Qiu, Vogelsang, Yuan, 06, ...
 - Twist-3 three-parton correlation in fragmentation Collins function
 Zhou, Yuan, 09



Major difference in these two approaches

- Collinear factorization approach:
 - All the twist-3 correlation functions (both in distribution and fragmentation side) are universal
- However, the TMD function in TMD approach MIGHT not be universal
 - Sivers function is NOT universal

Collins 02, Boer, Mulders, Pijlman, 03, Collins, Metz, 04, Kang, Qiu, 09, ...

Collins function is universal

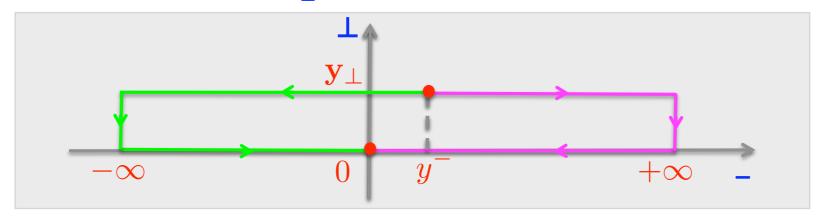
Metz 02, Collins, Metz, 04, Yuan, 08, Gamberg, Mukerjee, Mulders, 08, Meissner, Metz, 08, Zhou, Yuan, 09, ...

Non-universality of the Sivers function

Different gauge link for gauge-invariant TMD distribution in SIDIS and

 $f_{q/h^{\uparrow}}(x, \mathbf{k}_{\perp}, \vec{S}) = \int \frac{dy^{-}d^{2}y_{\perp}}{(2\pi)^{3}} e^{ixp^{+}y^{-} - i \mathbf{k}_{\perp} \cdot \mathbf{y}_{\perp}} \langle p, \vec{S} | \overline{\psi}(0^{-}, \mathbf{0}_{\perp}) \boxed{\mathbf{Gauge link}} \frac{\gamma^{+}}{2} \psi(y^{-}, \mathbf{y}_{\perp}) | p, \vec{S} \rangle$

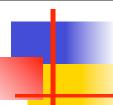
- $\quad \blacksquare \quad \textbf{SIDIS:} \quad \Phi_n^\dagger(\{+\infty,0\},\mathbf{0}_\perp)\Phi_{\mathbf{n}_\perp}^\dagger(+\infty,\{\mathbf{y}_\perp,\mathbf{0}_\perp\})\Phi_n(\{+\infty,y^-\},\mathbf{y}_\perp)$
- $\bullet \quad \mathsf{DY:} \qquad \Phi_n^\dagger(\{-\infty,0\},\mathbf{0}_\perp)\Phi_{\mathbf{n}_\perp}^\dagger(-\infty,\{\mathbf{y}_\perp,\mathbf{0}_\perp\})\Phi_n(\{-\infty,y^-\},\mathbf{y}_\perp)$



Wilson Loop $\sim \exp\left[-ig\int_{\Sigma}d\sigma^{\mu\nu}F_{\mu\nu}\right]$ Area is NOT zero

For a fixed spin state:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x, \mathbf{k}_{\perp}, \vec{S}) \neq f_{q/h^{\uparrow}}^{\text{DY}}(x, \mathbf{k}_{\perp}, \vec{S})$$



Time-reversal modified universality of the Sivers function

- Relation between Sivers functions in SIDIS and DY
 - From P and T invariance:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x, \mathbf{k}_{\perp}, \vec{S}) = f_{q/h^{\uparrow}}^{\text{DY}}(x, \mathbf{k}_{\perp}, -\vec{S})$$

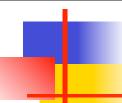
- Spin-averaged parton distribution function is universal
- From definition:

$$f_{q/h^{\uparrow}}(x, \mathbf{k}_{\perp}, \vec{S}) \equiv f_{q/h}(x, k_{\perp}) + \frac{1}{2} \Delta^{N} f_{q/h^{\uparrow}}(x, k_{\perp}) \vec{S} \cdot \hat{p} \times \hat{\mathbf{k}}_{\perp}$$

One can derive:

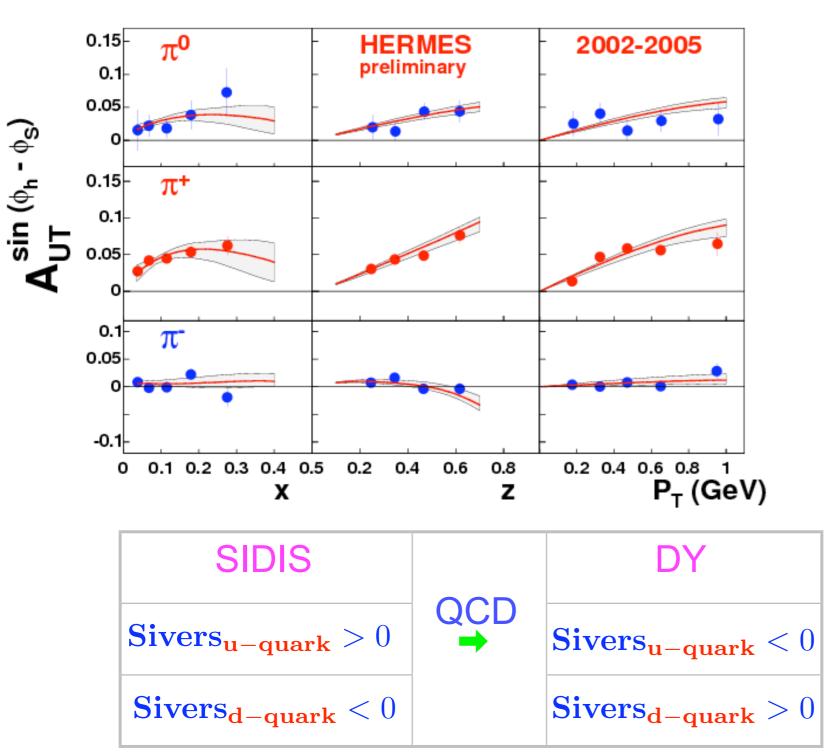
$$\Delta^N f_{q/h^{\uparrow}}^{\text{SIDIS}}(x, k_{\perp}) = -\Delta^N f_{q/h^{\uparrow}}^{\text{DY}}(x, k_{\perp})$$

Most critical test for TMD approach to SSA

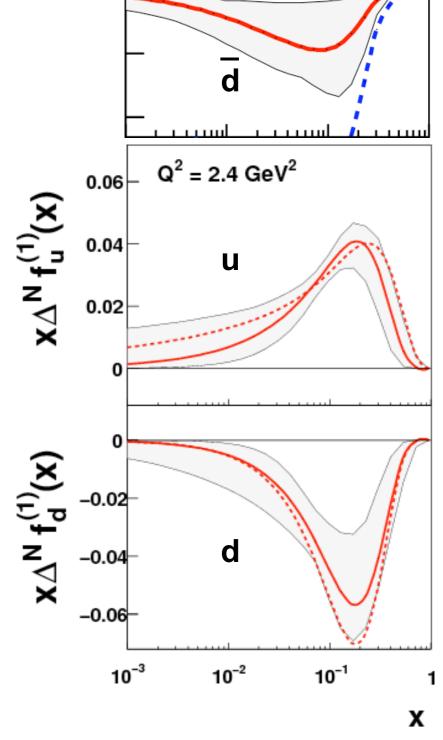


Sivers function from SIDIS

Extract Sivers function from SIDIS



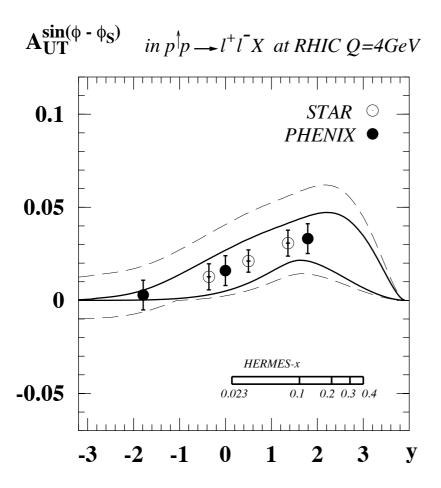
Anselmino, et.al., 2009



SSA for Drell-Yan dilepton production at RHIC

Sum of Sivers functions:

Collins, Efremov, Goeke, Menzel, et.al 2006



$$\mathbf{A_{UT}^{\sin(\phi - \phi_S)}} \quad in \ p \not p \rightarrow l^+ l^- X \quad at \ RHIC \ Q = 20 GeV$$

$$\mathbf{0.05}$$

$$\mathbf{0}$$

$$\mathbf{0.05}$$

$$\mathbf{0.05}$$

$$\mathbf{0.005}$$

$$\mathbf{0.023}$$

$$\mathbf{0.1}$$

$$\mathbf{0.2}$$

$$\mathbf{0.3}$$

$$\mathbf{0.1}$$

$$\mathbf{0.2}$$

$$\mathbf{0.3}$$

$$\mathbf{0.4}$$

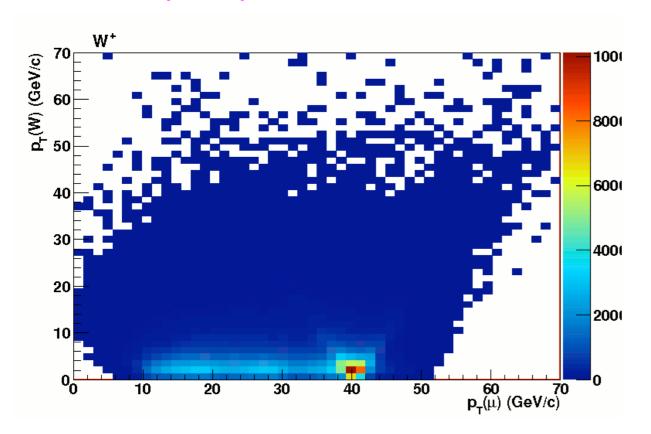
$$\mathbf{0.1}$$

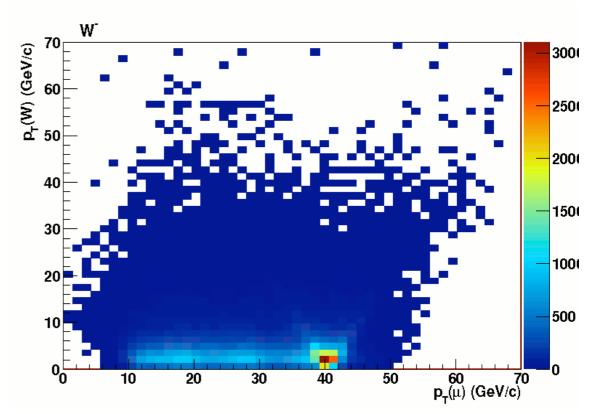
error band: 1-σ uncertainty of the fit of Sivers function

$$A_N = \frac{\sum_{q} e_q^2 \int \Delta^N f_{q/A\uparrow}(x_1, \mathbf{k}_{\perp 1}) f_{\bar{q}/B}(x_2, k_{\perp 2})}{2 \sum_{q} e_q^2 \int f_{q/A}(x_1, k_{\perp 1}) f_{\bar{q}/B}(x_2, k_{\perp 2})} \propto \frac{4}{9} \Delta^N f_u + \frac{1}{9} \Delta^N f_d$$

Production of W⁺, W⁻ at RHIC

- W boson are primarily produced at the region: $M_W >> q_T \sim 2 GeV$
 - Lepton p_T ~ M_W/2





Courtesy of Kempel, Lajoie (PHENIX)

- TMD approach could be used
 - W events ~ 10, 000

SSA of W boson

- Results in TMD approach:
 - Spin-dependent:

$$\frac{d\Delta\sigma_{A^{\uparrow}B\to W}(\vec{S}_{\perp})}{dy_{W} d^{2}\mathbf{q}_{\perp}} = \frac{\sigma_{0}}{2} \sum_{a,b} |V_{ab}|^{2} \int d^{2}\mathbf{k}_{a\perp} d^{2}\mathbf{k}_{b\perp} \vec{S}_{\perp} \cdot (\hat{p}_{A} \times \hat{\mathbf{k}}_{a\perp})$$

$$\times \Delta^{N} f_{a/A^{\uparrow}}^{DY}(x_{a}, k_{a\perp}) f_{b/B}(x_{b}, k_{b\perp}) \delta^{2}(\mathbf{q}_{\perp} - \mathbf{k}_{a\perp} - \mathbf{k}_{b\perp})$$

$$x_{a} = \frac{M_{W}}{\sqrt{s}} e^{y_{W}}, \quad x_{b} = \frac{M_{W}}{\sqrt{s}} e^{-y_{W}}$$

W::
$$ab = d\bar{u}, \bar{u}d, \cdots$$

W+:
$$ab = u\bar{d}, \bar{d}u, \cdots$$

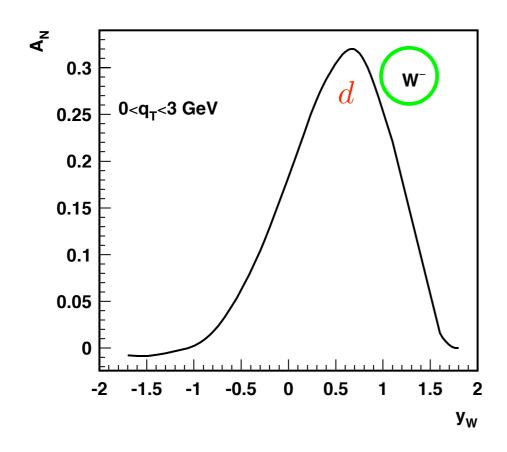
 W- sensitive to d and u-bar Sivers function, W+ sensitive to u and d-bar Sivers function

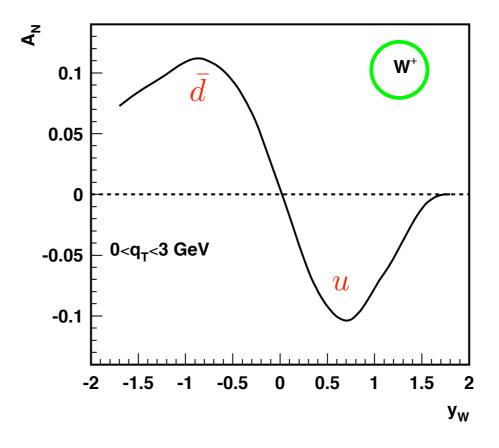
$$A_N^{(W)} \equiv \frac{d\Delta\sigma(\vec{S}_\perp)_{A^\uparrow B \to W}}{dy_W d^2 \mathbf{q}_\perp} / \frac{d\sigma_{AB \to W}}{dy_W d^2 \mathbf{q}_\perp}$$

SSA of W bosons: rapidity dependence

Brodsky, Hwang, Schmidt, 2002, Schmidt, Soffer, 03, Kang, Qiu, 09

- Use the Sivers functions extracted by Anselmino et al.
- SSAs of W production at RHIC:
 - Sivers function same as DY, different from SIDIS by a sign

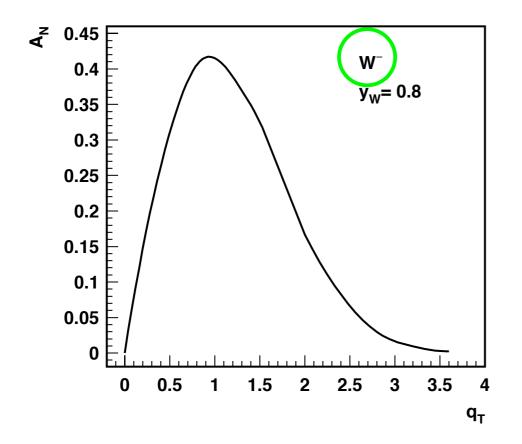


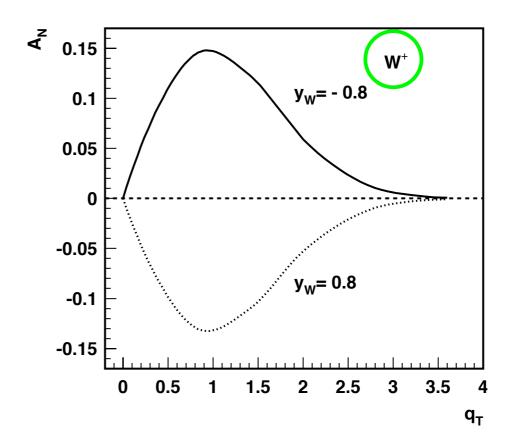


Good flavor separation

SSA of W bosons: q_T dependence

Large asymmetry: should be able to see sign change



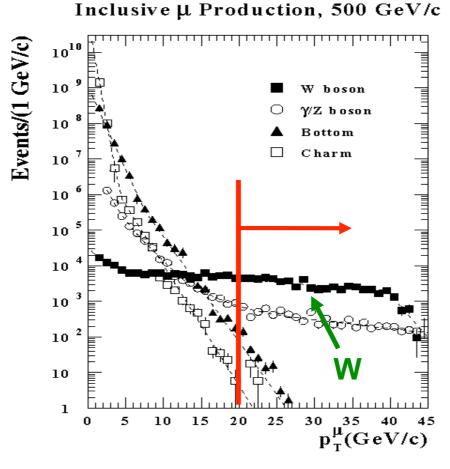


But, the detectors at RHIC cannot reconstruct the W's

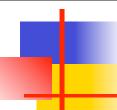
Lepton from W decay: W→*µ v*

■ Inclusive lepton background from Charm/Bottom dies when $p_T > 20$

GeV

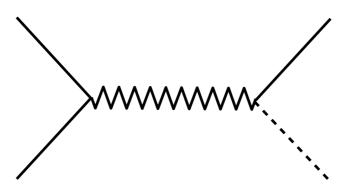


- Idea: integrate out the neutrino to measure SSA of inclusive high p_T lepton
- However, $sin(\Phi_s-\Phi_w)$ dependence of the SSA of W's could dilute the SSA of inclusive lepton



SSA of lepton from W decay: formula

Spin-dependent:



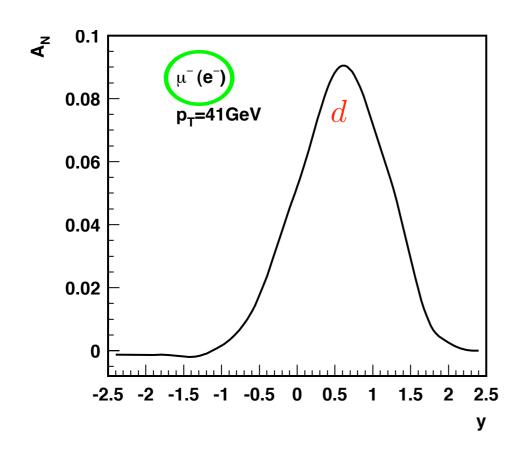
$$\frac{d\Delta\sigma_{A^{\uparrow}B\to\ell(p)}(\vec{S}_{\perp})}{dy\,d^{2}\mathbf{p}_{\perp}} = \sum_{a,b} |V_{ab}|^{2} \int dx_{a}\,d^{2}\mathbf{k}_{a\perp} \int dx_{b}\,d^{2}\mathbf{k}_{b\perp}\vec{S}_{\perp} \cdot (\hat{p}_{A}\times\hat{\mathbf{k}}_{a\perp})\Delta^{N}f_{a/A^{\uparrow}}^{\mathrm{DY}}(x_{a},k_{a\perp})
\times f_{b/B}(x_{b},k_{b\perp}) \frac{1}{16\pi^{2}\hat{s}} \left| \overline{\mathcal{M}}_{ab\to\ell} \right|^{2} \delta(\hat{s}+\hat{t}+\hat{u})$$

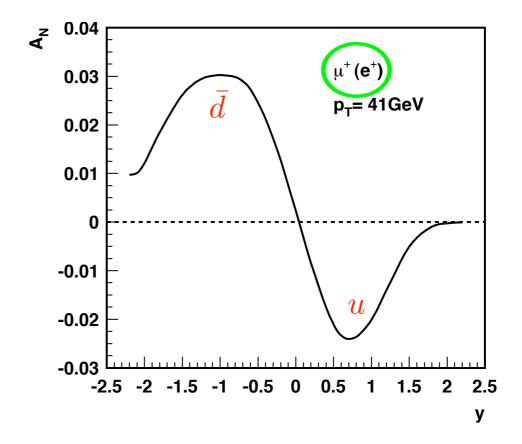
$$\left|\overline{\mathcal{M}}_{ab\to\ell}\right|^2 = \frac{8(G_F M_W^2)^2}{3} \frac{\hat{t}^2}{(\hat{s} - M_W^2)^2 + M_W^2 \Gamma_W^2} \qquad ab = \bar{u}d, \bar{u}s, u\bar{d}, u\bar{s}$$

$$\left|\overline{\mathcal{M}}_{ab\to\ell}\right|^2 = \frac{8(G_F M_W^2)^2}{3} \frac{\hat{u}^2}{(\hat{s} - M_W^2)^2 + M_W^2 \Gamma_W^2} \qquad ab = d\bar{u}, s\bar{u}, \bar{d}u, \bar{s}u$$

SSA of lepton from W decay: rapidity dependence

SSA of inclusive lepton is still sufficient for measurement:

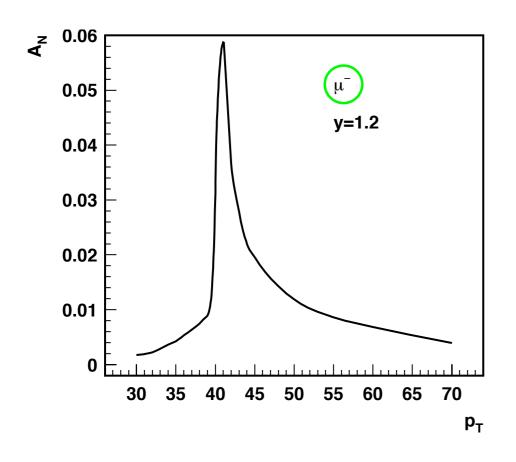


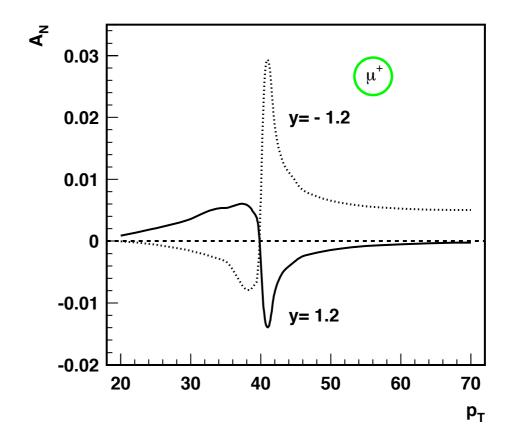


- Good flavor separation:
 - $\mu^-(e^-)$ at central-forward rapidity is sensitive to d Sivers function
 - μ+(e+) at forward is sensitive to u Sivers function, at backward is sensitive to d-bar Sivers function

SSA of lepton from W decay: p_T dependence

■ p_T behavior of SSA of leptons:

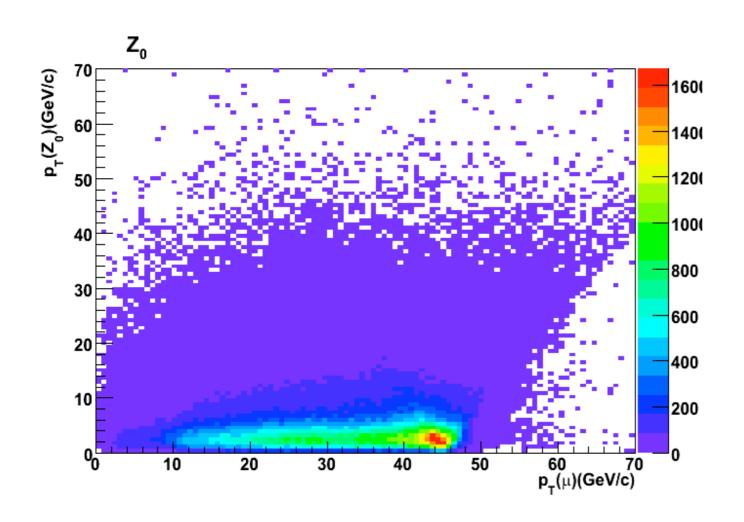


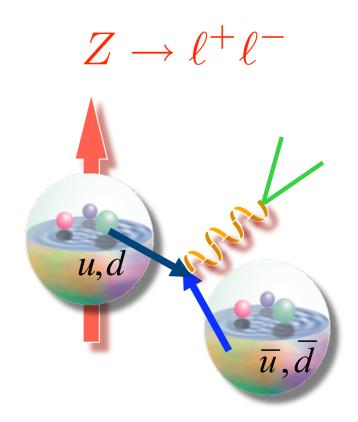


- inherit the key features of W asymmtry
- sharply peeked around $p_T \sim M_W/2$, should help control the potential background

What about Z boson?

RHIC can reconstruct Z boson



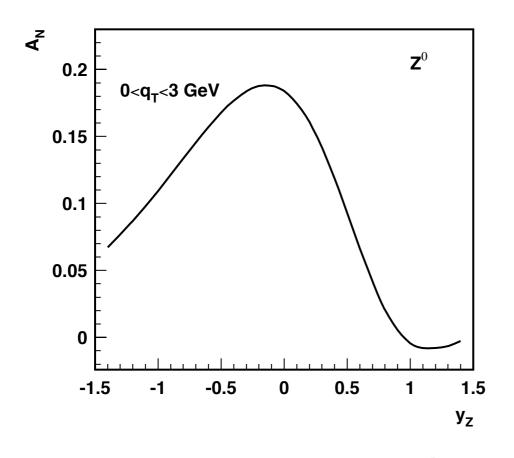


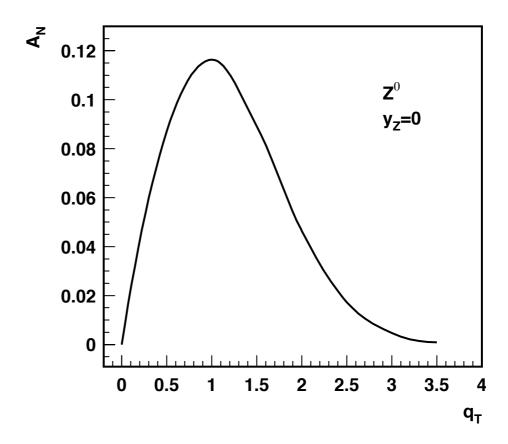
Courtesy of Kempel, Lajoie (PHENIX)

- Events down by an order of magnitude compared to W boson:
 - **■** ~1000

SSA of Z boson at RHIC

Prediction for RHIC kinematics:





 Fairly large asymmetry, should be very good channel to test sign change if one can accumulate enough Z boson

Summary

- Sign change of Sivers function between DY and SIDIS is the most critical test for our current understanding of SSAs
- Besides the standard DY dilepton production, we propose to use the SSAs of W and/or Z boson production to test this sign change
- Lepton decayed from W⁺, W⁻ boson could give good flavor separation, give even separate tests for Sivers function of different flavors
- Z boson might also be a good channel if one could accumulate enough events

Thank you!